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Lattice Boltzmann method for viscoelastic fluids
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A lattice Boltzmann model for viscoelastic flow simulation is proposed. Elastic effects are taken into account
within the framework of a Maxwell model. To test the approach, we estimate the transverse velocity autocor-
relation function for a freely evolving system, and find clear manifestations of shear at large frequencies. We
then characterize boundary-driven shear waves, and the resonant enhancement of shear oscillations in a peri-
odically driven fluid confined within a capillary. The measured shear-wave dispersion relation is compared to
that obtained from the Navier-Stokes equation with a Maxwell viscoelastic term, and good agreement is
obtained.
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Although only slightly more than a decade old, the latti
Boltzmann method@1–4# has already gained the status of
versatile simulation tool for homogeneous and hetero
neous flows in various, often very complex, geometries.
this paper, we generalize the method to include the effect
viscoelasticity, a common property of complex fluids. F
example, many polymeric fluids are viscous on long-tim
scales, but elastic on short-time scales. The character
time, or the spectrum of such times, separating these
regimes is determined by intramolecular interactions in
fluid. If the molecules do not have time to ‘‘get out of th
way’’ on the time scale of a process, they react rigidly, like
solid. Viscoelasticity on physically relevant time scales
common to fluids made up of complex molecules. Hence
inclusion makes the range of application of the lattice Bo
zmann method wider. A modification of the standard latt
Bhatnagar-Gross-Krook~BGK! model @3,5# has been sug
gested in Ref.@6#, which permits shear wave propagation,
intrinsic feature of viscoelastic fluids. However, it does n
include memory of accumulated shear strain, which is a n
essary and natural feature of viscoelasticity. To address
we propose a more general approach, based on a physi
transparent Maxwell model of viscoelasticity@7#, which ex-
hibits viscoelastic properties and accounts for accumula
stress via an exponentially decaying memory function.

For simplicity, consider a standard six-velocity BG
model on a two-dimensional hexagonal lattice. General
tions to more sophisticated lattice Boltzmann schemes
straightforward. The evolution equations for ani th channel
~corresponding to one of the six directions for velocity! in-
volve the occupation numberf i @3#

f i~rW1CW i ,t11!5 f i~rW,t !1l$ f i~rW,t !2 f i
eq~rW,t !%, ~1!

wherel is a relaxation parameter related to viscosity@1–4#,
and the equilibrium occupation numbersf i

eq are

f i
eq5

r

6
$112CW i•UW 14@~CW i•UW !22 1

2 U2#%, ~2!
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where r[( i 51
6 f i , and UW [( i 51

6 f iCW i are the equilibrium

density and velocity at each lattice site, respectively, andCW i ,
i 51•••6 are the lattice unit vectors. Performing th
Chapman-Enskog expansion, one can show@3,4# that these
equations give rise to the Navier-Stokes equation with
correct convective term.

The Maxwell model for viscoelastic media@7# links the
elastic part of the stress tensorP i j

el to the rate of strain via a
linear equation with exponentially decaying elas
‘‘memory’’:

t
]P i j

el

]t
52P i j

el1mS ]v i

]xj
1

]v j

]xi
D , ~3!

wherem is an elastic coefficient andt is a memory time. As
the six-velocity BGK model adequately reproduces t
Navier-Stokes equation for incompressible fluids~i.e., ¹W •vW
50), we consider this case. Then the viscoelasticity of
fluid can be taken into account by adding the Maxwell elas
stress as a body forceFW el(rW,t),

FW el~rW,t !5
m

t E2`

t

dt8e2(t2t8)/t¹2vW ~rW,t8!, ~4!

within the Navier-Stokes equation. In terms of the Chapm
Enskog expansion@3,4# this elastic term is of the same orde
as the standard viscous term. Hence, to reproduce the el
term of Eq. ~4! in the corresponding continuous Navie
Stokes equation, we must add its lattice equivalent to
relaxation term in the lattice Boltzmann equations Eq.~1!

f i~rW1CW i ,t11!5 f i~rW,t !1l$ f i~rW,t !

2 f i
eq~rW,t !%1

1

3
@FW el~rW,t !•CW i #. ~5!

Here,FW el is calculated as in Eq.~4!, but with discretized time

FW el~rW,t11!5FW el~rW,t !@121/t#1DUW ~rW,t !
m

t
, ~6!
©2002 The American Physical Society04-1



na

r
to

st
to

-

in
-
ig
u

s
t

w
ve
d

s-

is-

set

ms
nt

ns,
o-

co-
ave

th

t

oc-

IAROSLAV ISPOLATOV AND MARTIN GRANT PHYSICAL REVIEW E 65 056704
whereD is the discrete Laplace operator for the hexago
lattice

DUW ~rW,t !5
2

3 (
i 51

6

@UW ~rW1CW i ,t !2UW ~rW,t !#. ~7!

Equations~5!–~7! formally define our model. Thus, to
include the Maxwell viscoelastic effects into the standa
lattice Boltzmann method, one need only add a local vec
field Eq. ~6! to the standard BGK relaxation term Eq.~5!,
which is updated each time step for every lattice siterW.

To demonstrate viscoelasticity in the model, we first e
mate the Fourier transform of the transverse velocity au
correlation functionST[^uŨy(kx ,v)u2&, where the angular
brackets denote an average, and

Ũy~kx ,v![
1

L2T (
x52L/2

L/2

(
y51

L

(
t51

T

Uy~x,y,t !e2 ikxxeivt.

~8!

Note thatkx52pn/L, n52L/2, . . . ,L/2, andv52pm/T,
wherem51, . . . ,T. Here the sum ony corresponds to aver
agingŨy(kx ,v) over they coordinate. We use the following
parameters in our simulation: relaxation parameterl5
21.5 @which corresponds to kinematic viscosityn51/4
(21/l21/2)'0.042], elastic coefficientm50.3, memory
time t510, lattice of 2563256 sites, maximum timeT
5256, and random initial occupation numbers correspond
to average density per siter51. The simulation results, av
eraged over 100 initial configurations, are presented in F
1 and 2 for the lattice Boltzmann models with and witho
elastic effects, respectively. Two symmetric branchesv
5v(ukxu), clearly noticeable in Fig. 1 at large frequencie
correspond to propagating shear waves. These indicate
our model indeed exhibits viscoelasticity.

For more quantitative insight concerning the elasticity,
derive dispersion relations for the continuous shear wa
within the framework of the Maxwell model. The linearize

FIG. 1. Sketch of the Fourier transform of the average of
transverse velocity autocorrelation function,ST(kx ,v) showing the
effect of viscoelasticity. Note the two branches corresponding
shear waves.
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Navier-Stokes equation with Maxwell elastic term for tran
verse velocity of incompressible fluid is

]v
]t

5n¹2v1
m

t E2`

t

dt8e2(t2t8)/t¹2vW ~rW,t8!. ~9!

Letting v(x,t)5v0exp(2ivt)exp(ikx), and discarding expo-
nentially decaying terms, gives

k25v
i 1vt

n~12 ivt!1m
. ~10!

On separating the real and imaginary parts ofk, Re(k) and
Im(k), we have

k5A v

2@~m1n!21~nvt!2#

3$Amvt1A~mvt!21@n~11v2t2!1m#2

1 iA2mvt1A~mvt!21@n~11v2t2!1m#2%.

~11!

We will consider propagating shear waves with small d
sipation, so that the ratio

Re~k!

Im~k!
5

mvt1A~mvt!21@n~11v2t2!1m#2

n@11~vt!2#1m
~12!

can be appreciable. Note that Re(k)/Im(k) is the dimension-
less length of the elastic wave envelope. Naively, one can
nv2t2!m, and choose a sufficiently large value ofvt to
make Re(k)/Im(k) as large as desired. However, syste
with too small a viscosity and too large an elastic coefficie
can be numerically unstable. For random initial conditio
or for small drive, we numerically determined that the d
main of stability was roughly delimited byn>0.04 andm
<10n. For these conditions on viscosity and the elastic
efficient, the largest dimensionless length of the elastic w
envelope is approximately three, which occurs forvt'3.

e

o

FIG. 2. Sketch of the Fourier transform of the transverse vel
ity autocorrelation function,ST(kx ,v) with no viscoelasticity. Note
the absence of shear waves.
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This gives the dimensionless maximumt, in terms of fre-
quency, with which the relevance to an experimental sys
can be determined.

To verify that our model reproduces this, we perform
the following simulation. We considered a lattice of si
1003100, with periodic boundary conditions in thex direc-
tion, and reflecting boundary conditions in they direction.
The reflection from they50 wall is periodically modulated
Therefore, thex components of the velocities after reflectio
were set proportional to cos(vt). Simulations were per-
formed forl521.5 (n'0.042), elastic coefficientm50.3;
memory timet546 and the period of oscillationT corre-
sponded to the theoretical maximum of Re(k)/Im(k).

The simulation results are presented in Fig. 3. This sho
the x component of velocitŷUx(y,tn)&x,n , measured at the
times tn5nT, for integern, after averagingx andn. Results
are shown forT52000 andt5920 ~circles!, and for T
54000 andt51840 ~squares!. These are compared to th
theoretical result̂ Ux&5A exp@2Im(k)y#cos@Re(k)y#, with
Im(k) and Re(k) as calculated according to Eq.~11!. The
agreement is excellent for both values oft.

Finally, consider periodically driven fluid in a capillary
This permits a further quantitative test of our approach.
consider a system of size 93128, with stick boundary con
ditions for the long walls, and periodic boundary conditio
for the short walls. A uniform time-periodic volume forc
Fy5F0cos(vt), directed along the longer walls, is applied
the fluid in the capillary. In the update scheme, Eq.~5! is
implemented by adding the driving forceFy(t) to the elastic
forceFW el in the relaxation term on the right-hand side of t
lattice equation.

For a fluid with shear elasticity, there should be a re
nance when the driving frequencyv coincides with the in-
trinsic oscillation frequencyV of elastic media in the capil
lary. To characterize this resonance, we consider dri
oscillations of the first Fourier harmonic of velocity in th
direction of the applied force

FIG. 3. Plots of thex component of the average velocit
^Ux(y,tn)&x,n measured at the timestn5nT, n51, . . . , vs thedis-
tance form the driving wally for n50.042 andm50.3. Simulation
results forT52000, t5920 andT54000, t51840 are shown by
circles and squares, respectively. Solid lines correspond to the
ical results in the form̂Ux&5A exp@2Im(k)y#cos@Re(k)y#.
05670
m

s

e

-

n

ṽ1y~ t !5
2

LxLy
E

0

Lx
dxE

0

Ly
dy sinS p

x

Lx
D vy~x,y,t !, ~13!

where the integration overdy corresponds to averagin
along the length of the capillary. In the presence of a volu
force Fy(t), a linearized Navier-Stokes equation yields

ṽ1y5
4F0

qLx

1

q2Fn1
m

11v2t2G1 ivF q2mt

11v2t2 21G , ~14!

where q5p/Lx is the wave vector of the first harmonic
Resonance is achieved when the absolute value of this
pression has the maximum, i.e., when the second brack
denominator vanishes

v5V[
1

t
Aq2mt21. ~15!

Furthermore, at resonance there should be no phase
between the driving force and the induced oscillation, so t
the ratio between the force and the oscillation amplitude
real.

To check whether our model behaves as predicted,
performed a simulation using the following parameters:m
50.3, l521.5, t5250, andF050.001. The frequency o
the drivev was equal toV'0.011,V/2, and 2V. The mea-
sured values of theṽ1y are presented in Fig. 4. After a sho
transient period the system approaches the steady-state
anticipated, for resonant drive (v5V) the steady state am
plitude of oscillation ṽ1y'0.16; while for off-resonance
drive, v5V/2 andv52V, the amplitudesṽ1y are at least
twice smaller. To investigate any possible phase shift
tween the drive and induced oscillations, we also plotted
driving force for the resonant frequencyF(t);cos(Vt). One
can observe that there is no visible phase shift between d
ing and induced oscillation. This confirms that the shear e
tic resonance frequency of our model is well reproduced
the continuous expression Eq.~15!. We also observe tha

et-

FIG. 4. Amplitude of the first Fourier harmonicṽ1y as a func-
tion of time for different driving frequencies,v5V, v52V, and
v5V/2. Resonance is clearly apparent forv5V.
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when the drive frequencyv is below or above the resonanc
frequencyV, the induced oscillations are phase delayed a
phase advanced, respectively, which again follows from
~14!.

To conclude, we have proposed a simple yet versatile
proach for incorporating viscoelastic effects into lattice Bo
zmann simulations for a six-velocity two-dimensional BG
model. Through simulation and analysis for a variety
physical systems, the behavior of the proposed viscoela
lattice Boltzmann model is qualitatively and quantitative
L.

05670
d
q.

p-
-

f
tic

described by the continuous Navier-Stokes equations w
Maxwell viscoelastic term. Hence, we conclude that o
model indeed reproduces the Maxwell viscoelasticity for
incompressible fluid flow. Generalization to more sophis
cated schemes, including three dimensions and hig
velocity models is straightforward.
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